/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. */ /* $XFree86$ */ /* * intersect.c++ * * $Date$ $Revision$ * $Header$ */ #include "glimports.h" #include "myassert.h" #include "mystdio.h" #include "subdivider.h" #include "arc.h" #include "bin.h" #include "backend.h" #include "trimvertpool.h" /*#define NOTDEF*/ enum i_result { INTERSECT_VERTEX, INTERSECT_EDGE }; /* local functions */ #ifndef NDEBUG static int arc_classify( Arc_ptr, int, REAL ); #endif static enum i_result pwlarc_intersect( PwlArc *, int, REAL, int, int[3] ); void Subdivider::partition( Bin & bin, Bin & left, Bin & intersections, Bin & right, Bin & unknown, int param, REAL value ) { Bin headonleft, headonright, tailonleft, tailonright; for( Arc_ptr jarc = bin.removearc(); jarc; jarc = bin.removearc() ) { REAL tdiff = jarc->tail()[param] - value; REAL hdiff = jarc->head()[param] - value; if( tdiff > 0.0 ) { if( hdiff > 0.0 ) { right.addarc( jarc ); } else if( hdiff == 0.0 ) { tailonright.addarc( jarc ); } else { Arc_ptr jtemp; switch( arc_split(jarc, param, value, 0) ) { case 2: tailonright.addarc( jarc ); headonleft.addarc( jarc->next ); break; case 31: assert( jarc->head()[param] > value ); right.addarc( jarc ); tailonright.addarc( jtemp = jarc->next ); headonleft.addarc( jtemp->next ); break; case 32: assert( jarc->head()[param] <= value ); tailonright .addarc( jarc ); headonleft.addarc( jtemp = jarc->next ); left.addarc( jtemp->next ); break; case 4: right.addarc( jarc ); tailonright.addarc( jtemp = jarc->next ); headonleft.addarc( jtemp = jtemp->next ); left.addarc( jtemp->next ); } } } else if( tdiff == 0.0 ) { if( hdiff > 0.0 ) { headonright.addarc( jarc ); } else if( hdiff == 0.0 ) { unknown.addarc( jarc ); } else { headonleft.addarc( jarc ); } } else { if( hdiff > 0.0 ) { Arc_ptr jtemp; switch( arc_split(jarc, param, value, 1) ) { case 2: tailonleft.addarc( jarc ); headonright.addarc( jarc->next ); break; case 31: assert( jarc->head()[param] < value ); left.addarc( jarc ); tailonleft.addarc( jtemp = jarc->next ); headonright.addarc( jtemp->next ); break; case 32: assert( jarc->head()[param] >= value ); tailonleft.addarc( jarc ); headonright.addarc( jtemp = jarc->next ); right.addarc( jtemp->next ); break; case 4: left.addarc( jarc ); tailonleft.addarc( jtemp = jarc->next ); headonright.addarc( jtemp = jtemp->next ); right.addarc( jtemp->next ); } } else if( hdiff == 0.0 ) { tailonleft.addarc( jarc ); } else { left.addarc( jarc ); } } } if( param == 0 ) { classify_headonleft_s( headonleft, intersections, left, value ); classify_tailonleft_s( tailonleft, intersections, left, value ); classify_headonright_s( headonright, intersections, right, value ); classify_tailonright_s( tailonright, intersections, right, value ); } else { classify_headonleft_t( headonleft, intersections, left, value ); classify_tailonleft_t( tailonleft, intersections, left, value ); classify_headonright_t( headonright, intersections, right, value ); classify_tailonright_t( tailonright, intersections, right, value ); } } inline static void vert_interp( TrimVertex *n, TrimVertex *l, TrimVertex *r, int p, REAL val ) { assert( val > l->param[p]); assert( val < r->param[p]); n->nuid = l->nuid; n->param[p] = val; if( l->param[1-p] != r->param[1-p] ) { REAL ratio = (val - l->param[p]) / (r->param[p] - l->param[p]); n->param[1-p] = l->param[1-p] + ratio * (r->param[1-p] - l->param[1-p]); } else { n->param[1-p] = l->param[1-p]; } } int Subdivider::arc_split( Arc_ptr jarc, int param, REAL value, int dir ) { int maxvertex = jarc->pwlArc->npts; Arc_ptr jarc1; #ifdef NOTDEF Arc_ptr jarc2, jarc3; #endif TrimVertex* v = jarc->pwlArc->pts; int loc[3]; switch( pwlarc_intersect( jarc->pwlArc, param, value, dir, loc ) ) { // When the parameter value lands on a vertex, life is sweet case INTERSECT_VERTEX: { jarc1 = new(arcpool) Arc( jarc, new( pwlarcpool) PwlArc( maxvertex-loc[1], &v[loc[1]] ) ); jarc->pwlArc->npts = loc[1] + 1; jarc1->next = jarc->next; jarc1->next->prev = jarc1; jarc->next = jarc1; jarc1->prev = jarc; assert(jarc->check() != 0); return 2; } // When the parameter value intersects an edge, we have to // interpolate a new vertex. There are special cases // if the new vertex is adjacent to one or both of the // endpoints of the arc. case INTERSECT_EDGE: { int i, j; if( dir == 0 ) { i = loc[0]; j = loc[2]; } else { i = loc[2]; j = loc[0]; } #ifndef NOTDEF // The split is between vertices at index j and i, in that // order (j < i) // JEB: This code is my idea of how to do the split without // increasing the number of links. I'm doing this so that // the is_rect routine can recognize rectangles created by // subdivision. In exchange for simplifying the curve list, // however, it costs in allocated space and vertex copies. TrimVertex *newjunk = trimvertexpool.get(maxvertex -i+1 /*-j*/); int k; for(k=0; knuid; } TrimVertex *vcopy = trimvertexpool.get(maxvertex); for(k=0; kpwlArc->pts=vcopy; v[i].nuid = jarc->nuid; v[j].nuid = jarc->nuid; vert_interp( &newjunk[0], &v[loc[0]], &v[loc[2]], param, value ); if( showingDegenerate() ) backend.triangle( &v[i], &newjunk[0], &v[j] ); vcopy[j+1].param[0]=newjunk[0].param[0]; vcopy[j+1].param[1]=newjunk[0].param[1]; jarc1 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc(maxvertex-i+1 , newjunk ) ); jarc->pwlArc->npts = j+2; jarc1->next = jarc->next; jarc1->next->prev = jarc1; jarc->next = jarc1; jarc1->prev = jarc; assert(jarc->check() != 0); return 2; #endif //not NOTDEF // JEB: This is the original version: #ifdef NOTDEF TrimVertex *newjunk = trimvertexpool.get(3); v[i].nuid = jarc->nuid; v[j].nuid = jarc->nuid; newjunk[0] = v[j]; newjunk[2] = v[i]; vert_interp( &newjunk[1], &v[loc[0]], &v[loc[2]], param, value ); if( showingDegenerate() ) backend.triangle( &newjunk[2], &newjunk[1], &newjunk[0] ); // New vertex adjacent to both endpoints if (maxvertex == 2) { jarc1 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( 2, newjunk+1 ) ); jarc->pwlArc->npts = 2; jarc->pwlArc->pts = newjunk; jarc1->next = jarc->next; jarc1->next->prev = jarc1; jarc->next = jarc1; jarc1->prev = jarc; assert(jarc->check() != 0); return 2; // New vertex adjacent to ending point of arc } else if (maxvertex - j == 2) { jarc1 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( 2, newjunk ) ); jarc2 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( 2, newjunk+1 ) ); jarc->pwlArc->npts = maxvertex-1; jarc2->next = jarc->next; jarc2->next->prev = jarc2; jarc->next = jarc1; jarc1->prev = jarc; jarc1->next = jarc2; jarc2->prev = jarc1; assert(jarc->check() != 0); return 31; // New vertex adjacent to starting point of arc } else if (i == 1) { jarc1 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( 2, newjunk+1 ) ); jarc2 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( maxvertex-1, &jarc->pwlArc->pts[1] ) ); jarc->pwlArc->npts = 2; jarc->pwlArc->pts = newjunk; jarc2->next = jarc->next; jarc2->next->prev = jarc2; jarc->next = jarc1; jarc1->prev = jarc; jarc1->next = jarc2; jarc2->prev = jarc1; assert(jarc->check() != 0); return 32; // It's somewhere in the middle } else { jarc1 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( 2, newjunk ) ); jarc2 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( 2, newjunk+1 ) ); jarc3 = new(arcpool) Arc( jarc, new(pwlarcpool) PwlArc( maxvertex-i, v+i ) ); jarc->pwlArc->npts = j + 1; jarc3->next = jarc->next; jarc3->next->prev = jarc3; jarc->next = jarc1; jarc1->prev = jarc; jarc1->next = jarc2; jarc2->prev = jarc1; jarc2->next = jarc3; jarc3->prev = jarc2; assert(jarc->check() != 0); return 4; } #endif // NOTDEF } default: return -1; //picked -1 since it's not used } } /*---------------------------------------------------------------------------- * pwlarc_intersect - find intersection of pwlArc and isoparametric line *---------------------------------------------------------------------------- */ static enum i_result pwlarc_intersect( PwlArc *pwlArc, int param, REAL value, int dir, int loc[3] ) { assert( pwlArc->npts > 0 ); if( dir ) { TrimVertex *v = pwlArc->pts; int imin = 0; int imax = pwlArc->npts - 1; assert( value > v[imin].param[param] ); assert( value < v[imax].param[param] ); while( (imax - imin) > 1 ) { int imid = (imax + imin)/2; if( v[imid].param[param] > value ) imax = imid; else if( v[imid].param[param] < value ) imin = imid; else { loc[1] = imid; return INTERSECT_VERTEX; } } loc[0] = imin; loc[2] = imax; return INTERSECT_EDGE; } else { TrimVertex *v = pwlArc->pts; int imax = 0; int imin = pwlArc->npts - 1; assert( value > v[imin].param[param] ); assert( value < v[imax].param[param] ); while( (imin - imax) > 1 ) { int imid = (imax + imin)/2; if( v[imid].param[param] > value ) imax = imid; else if( v[imid].param[param] < value ) imin = imid; else { loc[1] = imid; return INTERSECT_VERTEX; } } loc[0] = imin; loc[2] = imax; return INTERSECT_EDGE; } } #ifndef NDEBUG /*---------------------------------------------------------------------------- * arc_classify - determine which side of a line a jarc lies *---------------------------------------------------------------------------- */ static int arc_classify( Arc_ptr jarc, int param, REAL value ) { REAL tdiff, hdiff; if( param == 0 ) { tdiff = jarc->tail()[0] - value; hdiff = jarc->head()[0] - value; } else { tdiff = jarc->tail()[1] - value; hdiff = jarc->head()[1] - value; } if( tdiff > 0.0 ) { if( hdiff > 0.0 ) { return 0x11; } else if( hdiff == 0.0 ) { return 0x12; } else { return 0x10; } } else if( tdiff == 0.0 ) { if( hdiff > 0.0 ) { return 0x21; } else if( hdiff == 0.0 ) { return 0x22; } else { return 0x20; } } else { if( hdiff > 0.0 ) { return 0x01; } else if( hdiff == 0.0 ) { return 0x02; } else { return 0; } } } #endif void Subdivider::classify_tailonleft_s( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail at left, head on line */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 0, val ) == 0x02 ); j->clearitail(); REAL diff = j->next->head()[0] - val; if( diff > 0.0 ) { in.addarc( j ); } else if( diff < 0.0 ) { if( ccwTurn_sl( j, j->next ) ) out.addarc( j ); else in.addarc( j ); } else { if( j->next->tail()[1] > j->next->head()[1] ) in.addarc(j); else out.addarc(j); } } } void Subdivider::classify_tailonleft_t( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail at left, head on line */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 1, val ) == 0x02 ); j->clearitail(); REAL diff = j->next->head()[1] - val; if( diff > 0.0 ) { in.addarc( j ); } else if( diff < 0.0 ) { if( ccwTurn_tl( j, j->next ) ) out.addarc( j ); else in.addarc( j ); } else { if (j->next->tail()[0] > j->next->head()[0] ) out.addarc( j ); else in.addarc( j ); } } } void Subdivider::classify_headonleft_s( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail on line, head at left */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 0, val ) == 0x20 ); j->setitail(); REAL diff = j->prev->tail()[0] - val; if( diff > 0.0 ) { out.addarc( j ); } else if( diff < 0.0 ) { if( ccwTurn_sl( j->prev, j ) ) out.addarc( j ); else in.addarc( j ); } else { if( j->prev->tail()[1] > j->prev->head()[1] ) in.addarc( j ); else out.addarc( j ); } } } void Subdivider::classify_headonleft_t( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail on line, head at left */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 1, val ) == 0x20 ); j->setitail(); REAL diff = j->prev->tail()[1] - val; if( diff > 0.0 ) { out.addarc( j ); } else if( diff < 0.0 ) { if( ccwTurn_tl( j->prev, j ) ) out.addarc( j ); else in.addarc( j ); } else { if( j->prev->tail()[0] > j->prev->head()[0] ) out.addarc( j ); else in.addarc( j ); } } } void Subdivider::classify_tailonright_s( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail at right, head on line */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 0, val ) == 0x12); j->clearitail(); REAL diff = j->next->head()[0] - val; if( diff > 0.0 ) { if( ccwTurn_sr( j, j->next ) ) out.addarc( j ); else in.addarc( j ); } else if( diff < 0.0 ) { in.addarc( j ); } else { if( j->next->tail()[1] > j->next->head()[1] ) out.addarc( j ); else in.addarc( j ); } } } void Subdivider::classify_tailonright_t( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail at right, head on line */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 1, val ) == 0x12); j->clearitail(); REAL diff = j->next->head()[1] - val; if( diff > 0.0 ) { if( ccwTurn_tr( j, j->next ) ) out.addarc( j ); else in.addarc( j ); } else if( diff < 0.0 ) { in.addarc( j ); } else { if( j->next->tail()[0] > j->next->head()[0] ) in.addarc( j ); else out.addarc( j ); } } } void Subdivider::classify_headonright_s( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail on line, head at right */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 0, val ) == 0x21 ); j->setitail(); REAL diff = j->prev->tail()[0] - val; if( diff > 0.0 ) { if( ccwTurn_sr( j->prev, j ) ) out.addarc( j ); else in.addarc( j ); } else if( diff < 0.0 ) { out.addarc( j ); } else { if( j->prev->tail()[1] > j->prev->head()[1] ) out.addarc( j ); else in.addarc( j ); } } } void Subdivider::classify_headonright_t( Bin& bin, Bin& in, Bin& out, REAL val ) { /* tail on line, head at right */ Arc_ptr j; while( (j = bin.removearc()) != NULL ) { assert( arc_classify( j, 1, val ) == 0x21 ); j->setitail(); REAL diff = j->prev->tail()[1] - val; if( diff > 0.0 ) { if( ccwTurn_tr( j->prev, j ) ) out.addarc( j ); else in.addarc( j ); } else if( diff < 0.0 ) { out.addarc( j ); } else { if( j->prev->tail()[0] > j->prev->head()[0] ) in.addarc( j ); else out.addarc( j ); } } }