/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** ** $Date$ $Revision$ */ /* ** $Header: //depot/main/gfx/lib/glu/libnurbs/nurbtess/directedLine.cc#4 $ */ #include #include #include #include "glimports.h" #include "zlassert.h" #include "quicksort.h" #include "directedLine.h" #include "polyDBG.h" //we must return the newLine directedLine* directedLine::deleteChain(directedLine* begin, directedLine* end) { if(begin->head()[0] == end->tail()[0] && begin->head()[1] == end->tail()[1] ) { directedLine *ret = begin->prev; begin->prev->next = end->next; end->next->prev = begin->prev; delete begin->sline; delete end->sline; delete begin; delete end; return ret; } directedLine* newLine; sampledLine* sline = new sampledLine(begin->head(), end->tail()); newLine = new directedLine(INCREASING, sline); directedLine *p = begin->prev; directedLine *n = end->next; p->next = newLine; n->prev = newLine; newLine->prev = p; newLine->next = n; delete begin->sline; delete end->sline; delete begin; delete end; return newLine; } void directedLine::deleteSingleLine(directedLine* dline) { //make sure that dline->prev->tail is the same as //dline->next->head. This is for numerical erros. //for example, if we delete a line which is almost degeneate //within (epsilon), then we want to make that the polygon after deletion //is still a valid polygon dline->next->head()[0] = dline->prev->tail()[0]; dline->next->head()[1] = dline->prev->tail()[1]; dline->prev->next = dline->next; dline->next->prev = dline->prev; delete dline; } static Int myequal(Real a[2], Real b[2]) { /* if(a[0]==b[0] && a[1] == b[1]) return 1; else return 0; */ if(fabs(a[0]-b[0]) < 0.00001 && fabs(a[1]-b[1]) < 0.00001) return 1; else return 0; } directedLine* directedLine::deleteDegenerateLines() { //if there is only one edge or two edges, don't do anything if(this->next == this) return this; if(this->next == this->prev) return this; //find a nondegenerate line directedLine* temp; directedLine* first = NULL; if(! myequal(head(), tail())) /* if(head()[0] != tail()[0] || head()[1] != tail()[1]) */ first = this; else { for(temp = this->next; temp != this; temp = temp->next) { /* if(temp->head()[0] != temp->tail()[0] || temp->head()[1] != temp->tail()[1]) */ if(! myequal(temp->head(), temp->tail())) { first = temp; break; } } } //if there are no non-degenerate lines, then we simply return NULL. if(first == NULL) { deleteSinglePolygonWithSline(); return NULL; } directedLine* tempNext = NULL; for(temp =first->next; temp != first; temp = tempNext) { tempNext = temp->getNext(); /* if(temp->head()[0] == temp->tail()[0] && temp->head()[1] == temp->tail()[1]) */ if(myequal(temp->head(), temp->tail())) deleteSingleLine(temp); } return first; } directedLine* directedLine::deleteDegenerateLinesAllPolygons() { directedLine* temp; directedLine *tempNext = NULL; directedLine* ret= NULL; directedLine* retEnd = NULL; for(temp=this; temp != NULL; temp = tempNext) { tempNext = temp->nextPolygon; temp->nextPolygon = NULL; if(ret == NULL) { ret = retEnd = temp->deleteDegenerateLines(); } else { directedLine *newPolygon = temp->deleteDegenerateLines(); if(newPolygon != NULL) { retEnd->nextPolygon = temp->deleteDegenerateLines(); retEnd = retEnd->nextPolygon; } } } return ret; } directedLine* directedLine::cutIntersectionAllPoly(int &cutOccur) { directedLine* temp; directedLine *tempNext = NULL; directedLine* ret= NULL; directedLine* retEnd = NULL; cutOccur = 0; for(temp=this; temp != NULL; temp = tempNext) { int eachCutOccur=0; tempNext = temp->nextPolygon; temp->nextPolygon = NULL; if(ret == NULL) { ret = retEnd = DBG_cutIntersectionPoly(temp, eachCutOccur); if(eachCutOccur) cutOccur = 1; } else { retEnd->nextPolygon = DBG_cutIntersectionPoly(temp, eachCutOccur); retEnd = retEnd->nextPolygon; if(eachCutOccur) cutOccur = 1; } } return ret; } void directedLine::deleteSinglePolygonWithSline() { directedLine *temp, *tempNext; prev->next = NULL; for(temp=this; temp != NULL; temp = tempNext) { tempNext = temp->next; delete temp->sline; delete temp; } } void directedLine::deletePolygonListWithSline() { directedLine *temp, *tempNext; for(temp=this; temp != NULL; temp=tempNext) { tempNext = temp->nextPolygon; temp->deleteSinglePolygonWithSline(); } } void directedLine::deleteSinglePolygon() { directedLine *temp, *tempNext; prev->next = NULL; for(temp=this; temp != NULL; temp = tempNext) { tempNext = temp->next; delete temp; } } void directedLine::deletePolygonList() { directedLine *temp, *tempNext; for(temp=this; temp != NULL; temp=tempNext) { tempNext = temp->nextPolygon; temp->deleteSinglePolygon(); } } /*a loop by itself*/ directedLine::directedLine(short dir, sampledLine* sl) { direction = dir; sline = sl; next = this; prev = this; nextPolygon = NULL; // prevPolygon = NULL; rootBit = 0;/*important to initilzae to 0 meaning not root yet*/ rootLink = NULL; } void directedLine::init(short dir, sampledLine* sl) { direction = dir; sline = sl; } directedLine::directedLine() { next = this; prev = this; nextPolygon = NULL; rootBit = 0;/*important to initilzae to 0 meaning not root yet*/ rootLink = NULL; } directedLine::~directedLine() { } Real* directedLine::head() { return (direction==INCREASING)? (sline->get_points())[0] : (sline->get_points())[sline->get_npoints()-1]; } /*inline*/ Real* directedLine::getVertex(Int i) { return (direction==INCREASING)? (sline->get_points())[i] : (sline->get_points())[sline->get_npoints() - 1 -i]; } Real* directedLine::tail() { return (direction==DECREASING)? (sline->get_points())[0] : (sline->get_points())[sline->get_npoints()-1]; } /*insert a new line between prev and this*/ void directedLine::insert(directedLine* nl) { nl->next = this; nl->prev = prev; prev->next = nl; prev = nl; nl->rootLink = this; /*assuming that 'this' is the root!!!*/ } Int directedLine::numEdges() { Int ret=0; directedLine* temp; if(next == this) return 1; ret = 1; for(temp = next; temp != this; temp = temp->next) ret++; return ret; } Int directedLine::numEdgesAllPolygons() { Int ret=0; directedLine* temp; for(temp=this; temp!= NULL; temp=temp->nextPolygon) { ret += temp->numEdges(); } return ret; } /*return 1 if the double linked list forms a polygon. */ short directedLine::isPolygon() { directedLine* temp; /*a polygon contains at least 3 edges*/ if(numEdges() <=2) return 0; /*check this edge*/ if(! isConnected()) return 0; /*check all other edges*/ for(temp=next; temp != this; temp = temp->next){ if(!isConnected()) return 0; } return 1; } /*check if the head of this edge is connected to *the tail of the prev */ short directedLine::isConnected() { if( (head()[0] == prev->tail()[0]) && (head()[1] == prev->tail()[1])) return 1; else return 0; } Int compV2InY(Real A[2], Real B[2]) { if(A[1] < B[1]) return -1; if(A[1] == B[1] && A[0] < B[0]) return -1; if(A[1] == B[1] && A[0] == B[0]) return 0; return 1; } Int compV2InX(Real A[2], Real B[2]) { if(A[0] < B[0]) return -1; if(A[0] == B[0] && A[1] < B[1]) return -1; if(A[0] == B[0] && A[1] == B[1]) return 0; return 1; } /*compare two vertices NOT lines! *A vertex is the head of a directed line. *(x_1, y_1) <= (x_2, y_2) if *either y_1 < y_2 *or y_1 == y_2 && x_1 < x_2. *return -1 if this->head() <= nl->head(), *return 1 otherwise */ Int directedLine::compInY(directedLine* nl) { if(head()[1] < nl->head()[1]) return -1; if(head()[1] == nl->head()[1] && head()[0] < nl->head()[0]) return -1; return 1; } /*compare two vertices NOT lines! *A vertex is the head of a directed line. *(x_1, y_1) <= (x_2, y_2) if *either x_1 < x_2 *or x_1 == x_2 && y_1 < y_2. *return -1 if this->head() <= nl->head(), *return 1 otherwise */ Int directedLine::compInX(directedLine* nl) { if(head()[0] < nl->head()[0]) return -1; if(head()[0] == nl->head()[0] && head()[1] < nl->head()[1]) return -1; return 1; } /*used by sort precedures */ static Int compInY2(directedLine* v1, directedLine* v2) { return v1->compInY(v2); } #ifdef NOT_USED static Int compInX(directedLine* v1, directedLine* v2) { return v1->compInX(v2); } #endif /*sort all the vertices NOT the lines! *a vertex is the head of a directed line */ directedLine** directedLine::sortAllPolygons() { Int total_num_edges = 0; directedLine** array = toArrayAllPolygons(total_num_edges); quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void *, void *)) compInY2); return array; } void directedLine::printSingle() { if(direction == INCREASING) printf("direction is INCREASING\n"); else printf("direction is DECREASING\n"); printf("head=%f,%f)\n", head()[0], head()[1]); sline->print(); } /*print one polygon*/ void directedLine::printList() { directedLine* temp; printSingle(); for(temp = next; temp!=this; temp=temp->next) temp->printSingle(); } /*print all the polygons*/ void directedLine::printAllPolygons() { directedLine *temp; for(temp = this; temp!=NULL; temp = temp->nextPolygon) { printf("polygon:\n"); temp->printList(); } } /*insert this polygon into the head of the old polygon List*/ directedLine* directedLine::insertPolygon(directedLine* oldList) { /*this polygon is a root*/ setRootBit(); if(oldList == NULL) return this; nextPolygon = oldList; /* oldList->prevPolygon = this;*/ return this; } /*cutoff means delete. but we don't deallocate any space, *so we use cutoff instead of delete */ directedLine* directedLine::cutoffPolygon(directedLine *p) { directedLine* temp; directedLine* prev_polygon = NULL; if(p == NULL) return this; for(temp=this; temp != p; temp = temp->nextPolygon) { if(temp == NULL) { fprintf(stderr, "in cutoffPolygon, not found\n"); exit(1); } prev_polygon = temp; } /* prev_polygon = p->prevPolygon;*/ p->resetRootBit(); if(prev_polygon == NULL) /*this is the one to cutoff*/ return nextPolygon; else { prev_polygon->nextPolygon = p->nextPolygon; return this; } } Int directedLine::numPolygons() { if(nextPolygon == NULL) return 1; else return 1+nextPolygon->numPolygons(); } /*let array[index ...] denote *all the edges in this polygon *return the next available index of array. */ Int directedLine::toArraySinglePolygon(directedLine** array, Int index) { directedLine *temp; array[index++] = this; for(temp = next; temp != this; temp = temp->next) { array[index++] = temp; } return index; } /*the space is allocated. The caller is responsible for *deallocate the space. *total_num_edges is set to be the total number of edges of all polygons */ directedLine** directedLine::toArrayAllPolygons(Int& total_num_edges) { total_num_edges=numEdgesAllPolygons(); directedLine** ret = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges); assert(ret); directedLine *temp; Int index = 0; for(temp=this; temp != NULL; temp=temp->nextPolygon) { index = temp->toArraySinglePolygon(ret, index); } return ret; } /*assume the polygon is a simple polygon, return *the area enclosed by it. *if thee order is counterclock wise, the area is positive. */ Real directedLine::polyArea() { directedLine* temp; Real ret=0.0; Real x1,y1,x2,y2; x1 = this->head()[0]; y1 = this->head()[1]; x2 = this->next->head()[0]; y2 = this->next->head()[1]; ret = -(x2*y1-x1*y2); for(temp=this->next; temp!=this; temp = temp->next) { x1 = temp->head()[0]; y1 = temp->head()[1]; x2 = temp->next->head()[0]; y2 = temp->next->head()[1]; ret += -( x2*y1-x1*y2); } return 0.5*ret; } /*******************split or combine polygons begin********************/ /*conect a diagonal of a single simple polygon or two simple polygons. *If the two vertices v1 (head) and v2 (head) are in the same simple polygon, *then we actually split the simple polygon into two polygons. *If instead two vertices velong to two difference polygons, *then we combine the two polygons into one polygon. *It is upto the caller to decide whether this is a split or a *combination. * *Case Split: *split a single simple polygon into two simple polygons by *connecting a diagonal (two vertices). *v1, v2: the two vertices are the head() of the two directedLines. * this routine generates one new sampledLine which is returned in *generatedLine, *and it generates two directedLines returned in ret_p1 and ret_p2. *ret_p1 and ret_p2 are used as the entry to the two new polygons. *Notice the caller should not deallocate the space of v2 and v2 after *calling this function, since all of the edges are connected to *ret_p1 or ret_p2. * *combine: *combine two simpolygons into one by connecting one diagonal. *the returned polygon is returned in ret_p1. */ /*ARGSUSED*/ void directedLine::connectDiagonal(directedLine* v1, directedLine* v2, directedLine** ret_p1, directedLine** ret_p2, sampledLine** generatedLine, directedLine* polygonList ) { sampledLine *nsline = new sampledLine(2); nsline->setPoint(0, v1->head()); nsline->setPoint(1, v2->head()); /*the increasing line is from v1 head to v2 head*/ directedLine* newLineInc = new directedLine(INCREASING, nsline); directedLine* newLineDec = new directedLine(DECREASING, nsline); directedLine* v1Prev = v1->prev; directedLine* v2Prev = v2->prev; v1 ->prev = newLineDec; v2Prev ->next = newLineDec; newLineDec->next = v1; newLineDec->prev = v2Prev; v2 ->prev = newLineInc; v1Prev ->next = newLineInc; newLineInc->next = v2; newLineInc->prev = v1Prev; *ret_p1 = newLineDec; *ret_p2 = newLineInc; *generatedLine = nsline; } //see the function connectDiangle /*ARGSUSED*/ void directedLine::connectDiagonal_2slines(directedLine* v1, directedLine* v2, directedLine** ret_p1, directedLine** ret_p2, directedLine* polygonList ) { sampledLine *nsline = new sampledLine(2); sampledLine *nsline2 = new sampledLine(2); nsline->setPoint(0, v1->head()); nsline->setPoint(1, v2->head()); nsline2->setPoint(0, v1->head()); nsline2->setPoint(1, v2->head()); /*the increasing line is from v1 head to v2 head*/ directedLine* newLineInc = new directedLine(INCREASING, nsline); directedLine* newLineDec = new directedLine(DECREASING, nsline2); directedLine* v1Prev = v1->prev; directedLine* v2Prev = v2->prev; v1 ->prev = newLineDec; v2Prev ->next = newLineDec; newLineDec->next = v1; newLineDec->prev = v2Prev; v2 ->prev = newLineInc; v1Prev ->next = newLineInc; newLineInc->next = v2; newLineInc->prev = v1Prev; *ret_p1 = newLineDec; *ret_p2 = newLineInc; } Int directedLine::samePolygon(directedLine* v1, directedLine* v2) { if(v1 == v2) return 1; directedLine *temp; for(temp = v1->next; temp != v1; temp = temp->next) { if(temp == v2) return 1; } return 0; } directedLine* directedLine::findRoot() { if(rootBit) return this; directedLine* temp; for(temp = next; temp != this; temp = temp->next) if(temp -> rootBit ) return temp; return NULL; /*should not happen*/ } directedLine* directedLine::rootLinkFindRoot() { directedLine* tempRoot; directedLine* tempLink; tempRoot = this; tempLink = rootLink; while(tempLink != NULL){ tempRoot = tempLink; tempLink = tempRoot->rootLink; } return tempRoot; } /*******************split or combine polygons end********************/ /*****************IO stuff begin*******************/ /*format: *#polygons * #vertices * vertices * #vertices * vertices *... */ void directedLine::writeAllPolygons(char* filename) { FILE* fp = fopen(filename, "w"); assert(fp); Int nPolygons = numPolygons(); directedLine *root; fprintf(fp, "%i\n", nPolygons); for(root = this; root != NULL; root = root->nextPolygon) { directedLine *temp; Int npoints=0; npoints = root->get_npoints()-1; for(temp = root->next; temp != root; temp=temp->next) npoints += temp->get_npoints()-1; fprintf(fp, "%i\n", npoints/*root->numEdges()*/); for(Int i=0; iget_npoints()-1; i++){ fprintf(fp, "%f ", root->getVertex(i)[0]); fprintf(fp, "%f ", root->getVertex(i)[1]); } for(temp=root->next; temp != root; temp = temp->next) { for(Int i=0; iget_npoints()-1; i++){ fprintf(fp, "%f ", temp->getVertex(i)[0]); fprintf(fp, "%f ", temp->getVertex(i)[1]); } fprintf(fp,"\n"); } fprintf(fp, "\n"); } fclose(fp); } directedLine* readAllPolygons(char* filename) { Int i,j; FILE* fp = fopen(filename, "r"); assert(fp); Int nPolygons; fscanf(fp, "%i", &nPolygons); directedLine *ret = NULL; for(i=0; irootLinkSet(NULL); directedLine *dLine; for(j=2; jrootLinkSet(thisPoly); thisPoly->insert(dLine); } VV[0][0]=vert[1][0]; VV[0][1]=vert[1][1]; sLine = new sampledLine(2,VV); dLine = new directedLine(INCREASING, sLine); dLine->rootLinkSet(thisPoly); thisPoly->insert(dLine); ret = thisPoly->insertPolygon(ret); } fclose(fp); return ret; }